MA10209 - Week 9 Tutorial

B3/B4, Andrew Kennedy

Top Tips (response to sheet 8)

- The best way to show a polynomial is reducible is to write it as a product of its factors.
- "If and only if" requires two directions.
- If you only need to prove one direction, make sure you prove the right one (e.g. 7a)

Working with matrices

Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

• Give a geometric interpretation of A and B.

- Verify that $A^4 = B^2 = I$, and that $BA = A^3B$.
- Show that the smallest group that contains A and B has eight elements.
- Find the smallest non-negative integers m, n such that $A^m B^n = A^2 B^5 A^3 B^3 A B^2 A B A.$

Give the following in cycle notation:

α	β	γ
$1 \mapsto 3$	$1 \mapsto 1$	$1 \mapsto 4$
$2 \mapsto 5$	$2 \mapsto 3$	$2 \mapsto 3$
$3 \mapsto 1$	$3 \mapsto 5$	$3 \mapsto 2$
$4 \mapsto 2$	$4 \mapsto 2$	$4 \mapsto 1$
5 → 4	$5 \mapsto 4$	5 → 5

Write the following in the form used above:

δ = (25) ε = (135)(24)

• Give the following in cycle notation:

α	β	γ
$1 \mapsto 3$	$1 \mapsto 1$	$1 \mapsto 4$
$2 \mapsto 5$	$2 \mapsto 3$	$2 \mapsto 3$
$3 \mapsto 1$	$3 \mapsto 5$	$3 \mapsto 2$
$4 \mapsto 2$	$4 \mapsto 2$	$4 \mapsto 1$
$5 \mapsto 4$	$5 \mapsto 4$	5 → 5
$\alpha = (1 \ 3)(2 \ 5 \ 4)$	$\beta = (2 \ 3 \ 5 \ 4)$	$\gamma = (1 4)(2 3)$

• Write the following in the form used above:

$\delta = (2 5)$	$\epsilon = (1 \ 3 \ 5)(2 \ 4)$
δ	3
$1 \mapsto 1$	$1 \mapsto 3$
$2 \mapsto 5$	$2 \mapsto 4$
$3 \mapsto 3$	$3 \mapsto 5$
$4 \mapsto 4$	$4 \mapsto 2$
$5 \mapsto 2$	$5 \mapsto 1$

• Give the following in cycle notation:

```
(2 3) \circ (3 4 5)
(3 4 5) \circ (2 3)
(1 2) \circ (1 3 2 4) \circ (1 2)
```

• Give the following in cycle notation:

 $(2 3) \circ (3 4 5) \qquad (3 4 5) \circ (2 3)$ $1 \leftrightarrow 1 \leftrightarrow 1$ $3 \leftrightarrow 2 \leftrightarrow 2$ $4 \leftrightarrow 4 \leftrightarrow 3$ $5 \leftrightarrow 5 \leftrightarrow 4$ $2 \leftrightarrow 3 \leftrightarrow 5$ = (2 3 4 5) $(3 4 5) \circ (2 3)$ $1 \leftrightarrow 1 \leftrightarrow 1$ $4 \leftrightarrow 3 \leftrightarrow 2$ $2 \leftrightarrow 2 \leftrightarrow 3$ $5 \leftrightarrow 4 \leftrightarrow 4$ $3 \leftrightarrow 5 \leftrightarrow 5$ = (2 4 5 3)

D_8 and cycle notation

D₈ is the group of symmetries of the square:

$$a = (1 \ 2 \ 3 \ 4)$$

 $b = (1 \ 2)(3 \ 4)$

Give a geometric interpretation of *a* and *b*.

Verify that $a^4 = b^2 = 1$, and that $ba = a^3b$.

Exercise sheet 9 - Overview

- QI similar to example
- Q2 techniques used at the start of Sheet 5 are relevant (integral entries means entries are integers)
- Q3
 - ▶ (a) similar to sudoku
- Q4 same as Q7 on Sheet 8 but with different notation
- Q5
 - (a) look up angle formulas
 - (b) use (a)

Exercise sheet 9 - Overview

- Q6 neatest option is to use cycle notation to represent the bijections
- ▶ Q8 see Q3(c)
- Q9 two directions: one is quick, the other can be completed using contradiction