MA10209 - Week 6 Tutorial

B3/B4, Andrew Kennedy

Top Tips (response to sheet 5)

- Proof by example is not a proof at all.
 - Examples can be useful in formulating theories, but this is not physics or engineering – experimental evidence can be wrong or misleading, maths is exact.
- Powers can't be computed within the equivalence class.
 E.g. in Z₇, [10] = [3], but [2¹⁰] = [1024] = [2] ≠ [1] = [8] = [2³]

Top Tips (response to sheet 5)

- Check your working.
 - In Euclid's algorithm, you can check the statement at each stage to find out if you're going wrong, and identify the problem.
- Answer the question that's given.
 - Read the question carefully.
 - Re-reading the question when you think you've answered it might help catch the times when you forget what you're aiming for.
- Show your working!
 - If you can't explain what you're doing, I can't tell where you're going wrong.

Group

> A set G equipped with a binary operation \star which satisfies:

Closed	For all $a, b \in G$,	$a \star b \in G$
Associative	For all $a, b, c \in G$,	$(a \star b) \star c = a \star (b \star c)$
Identity	There is an element $e \in G$, for every $a \in G$,	G with the property e ★ a = a ★ e = a
Inverse	For each $a \in G$, there is	an element a' ∈ G such that a★ a' = a'★ a = e

Abelian/Commutative Group

> A set G equipped with a binary operation \star which satisfies:

Closed	For all $a, b \in G$,	$a \star b \in G$
Associative	For all $a, b, c \in G$,	$(a \star b) \star c = a \star (b \star c)$
Identity	There is an element $e \in G$, for every $a \in G$,	G with the property $e \star a = a \star e = a$
Inverse	For each $a \in G$, there is	an element a' ∈ G such that a★ a' = a'★ a = e
Commutative	For all $a, b \in G$,	$a \star b = b \star a$

Ring

A set G equipped with binary operations + and \cdot which satisfy:

Addition	forms a commutative group: identity 0 and inverse of x is - x
Multiplication	 closed identity (I) associative commutative
Distributive laws	For all a, b, $c \in G$ a \cdot (b + c) = a \cdot b + a \cdot c (a + b) \cdot c = a \cdot c + b \cdot c

- Integral domain
 - > A set G equipped with binary operations + and \cdot which satisfy:

Addition	forms a commutative group: identity 0 and inverse of x is - x
Multiplication	 closed identity (I) associative commutative
Distributive laws	For all a, b, $c \in G$ a \cdot (b + c) = a \cdot b + a \cdot c (a + b) \cdot c = a \cdot c + b \cdot c
Distinct identities	0 ≠ I
Zeros	$a \cdot b = 0 \Longrightarrow a = 0 \text{ or } b = 0$

Field

A set G equipped with binary operations + and \cdot which satisfy:

Addition	forms a commutative group: identity 0 and inverse of x is - x
Multiplication	 closed identity (I) associative commutative
Distributive laws	For all a, b, $c \in G$ a \cdot (b + c) = a \cdot b + a \cdot c (a + b) \cdot c = a \cdot c + b \cdot c
Distinct identities	0 ≠ I
Zeros	$a \cdot b = 0 \Longrightarrow a = 0 \text{ or } b = 0$
Multiplicative inverses	For $x \neq 0 \in G$ there exists x' with $x \cdot x' = x' \cdot x = id$

Common examples

- Which of the following are:
 - Groups?
 - Abelian groups?
 - Rings?
 - Integral domains?
 - Fields?

$$(\mathbb{Z},+)$$
 (\mathbb{Z},\cdot) $(\mathbb{R},+,\cdot)$ $(\mathbb{Q},+,\cdot)$

$$(\mathbb{Z},+,\cdot)$$
 $(\mathbb{N},+,\cdot)$ $(\mathbb{Z}_4,+,\cdot)$ $(\mathbb{Z}_5,+,\cdot)$

 S_3 – group of symmetries on equilateral triangle

What are the six symmetries on an equilateral triangle?

 S_3 – group of symmetries on equilateral triangle

What are the six symmetries on an equilateral triangle?

 $\begin{aligned} &\text{id} = &\text{no transformation,} \\ &\alpha = &\text{reflection in A,} \\ &\beta = &\text{reflection in B,} \\ &\gamma = &\text{reflection in C,} \\ &\sigma = &\text{rotation of } \frac{2\pi}{3} \text{ clockwise,} \\ &\tau = &\text{rotation of } \frac{4\pi}{3} \text{ clockwise.} \end{aligned}$

 S_3 – group of symmetries on equilateral triangle

- id = no transformation,
- $\alpha =$ reflection in A,
- $\beta =$ reflection in B,
- $\gamma =$ reflection in C,
- σ =rotation of $\frac{2\pi}{3}$ clockwise,
- $\tau =$ rotation of $\frac{4\pi}{3}$ clockwise.
- Define a binary operation on S_3 and show it forms a group under this operation.
- Is the group abelian?

Let G be a group with $a, b \in G$ such that $a^2 = b$ and $b^2 = a$. Show that $a^3 = id$.

Let G be a group with $a, b \in G$ such that $a^2 = b$ and $b^2 = a$. Show that $a^3 = id$.

$$a^{4} = b^{2} = a$$

Premultiply by a^{-1} ,
 $a^{-1}a^{4} = a^{-1}a \implies a^{3} = \mathrm{id}$

Let G be an abelian group with $a, b \in G$ such that $a = a^{-1}$ and $b = b^{-1}$. Show that if c = ab then $c = c^{-1}$.

Let G be an abelian group with $a, b \in G$ such that $a = a^{-1}$ and $b = b^{-1}$. Show that if c = ab then $c = c^{-1}$.

$$c = ab = a^{-1}b^{-1} = b^{-1}a^{-1} = (ab)^{-1} = c^{-1}$$

Common theme: if you can find the right solution, writing it often doesn't take long. (But that doesn't make it easy to spot...)

Exercise Sheet 6 - overview

- QI playing with group elements
 - since inverses are unique, if you want to show a⁻¹ = b, it is enough to show that a ★ b=id
 - (c) consider S₃
- Q2 consider each of the group properties in turn and see what you are forced to include in your subgroup
- Q3 check the four conditions for a group. If any of them fall down, you can stop. Otherwise show that all four hold.

Exercise Sheet 6 - overview

- Q4 tricky in places
 - (d) part (c) gives a bijection between any two equivalence classes. What does this tell you about the sizes of the equivalence classes?
- Q5 find the six subgroups, then show that any other subgroup you try to create becomes one of these six.

• Q6

- (a) Pigeon hole principle. Consider g, g², g³, ..., gⁿ⁺¹.
- (b) Two questions: Why is it a group? Why does it have n elts?
- (d) Try to spot the group...

Exercise Sheet 6 - overview

- Q7 we can find λ, μ such that
 λp + μq = Ι
- Q8 find one condition that fails...
- Q9 a lot of thinking required, but not much writing
 (d) really not much writing! ^(C)

 Overall, a difficult enough sheet, but good for familiarising yourself with groups.

Let G be a group with |G| = 8, and with elements $e, a, b \in G$ such that:

 \cdot e is the identity,

$$\cdot a^4 = e, b^2 = e, \text{ and}$$

$$\cdot \quad ba = a^{-1}b.$$

Write the multiplication table for G